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Human action recognition is an important issue in the pattern recognition field, with applications

ranging from remote surveillance to the indexing of commercial video content. However, human

actions are characterized by non-linear dynamics and are therefore not easily learned and recognized.

Accordingly, this study proposes a silhouette-based human action recognition system in which a three-

step procedure is used to construct an efficient discriminant spatio-temporal subspace for k-NN

classification purposes. In the first step, an Adaptive Locality Preserving Projection (ALPP) method is

proposed to obtain a low-dimensional spatial subspace in which the linearity in the local data structure

is preserved. To resolve the problem of overlaps in the spatial subspace resulting from the ambiguity of

the human body shape among different action classes, temporal data are extracted using a Non-base

Central-Difference Action Vector (NCDAV) method. Finally, the Large Margin Nearest Neighbor (LMNN)

metric learning method is applied to construct an efficient spatio-temporal subspace for classification

purposes. The experimental results show that the proposed system accurately recognizes a variety of

human actions in real time and outperforms most existing methods. In addition, a robustness test with

noisy data indicates that our system is remarkably robust toward noise in the input images.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Human action recognition has attracted significant interest in
the computer vision community in recent decades and has
spurred the development of a wide variety of applications,
including video surveillance human–computer interaction and
the analysis of sporting events. However, automatic human action
recognition is highly challenging due to the non-stationary back-
ground of most video content, the ambiguity of the human body
shape among different actions, and the existence of intra-class
variations in the appearance, physical characteristics, and motion
style of different human subjects.

One of the most important issues in realizing human action
recognition systems is how to extract discriminant features from
a video sequence. A suitable feature extraction and selection
method can help system improve the recognition performance [1].
Moreover, the importance of feature extraction is not only for
human action recognition, but for face recognition, age and
gender classification [1–3]. In recent years, the feature of sparse
representation selected via the optimization process attracts a lot
of attention because it can provide promising recognition
ll rights reserved.
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performance for faces under occlusions or other variants [2]. In
addition, joint boosting [1] and the difference of Gaussian filter
followed by Radon transform [3] are powerful approaches for
feature selection. According to [4,5], most existing feature-based
human action recognition systems are based on optical flow [6,7],
space–time gradients [8,9], feature tracking models [10–15], or
sparse spatio-temporal interest points [16–21]. However, space–
time gradient methods and feature tracking models are highly
sensitive to the quality of the input video and variations in the
articulation of the human body or lighting conditions, respec-
tively. Furthermore, the performance of recognition systems
based on sparse interest points is inevitably limited due to the
loss of global structure information [22]. Accordingly, the feasi-
bility of performing human action recognition based on the
human silhouette has attracted increasing interest in recent years
[4,5,23–28]. Compared to the feature extraction methods pro-
posed in [6–21], silhouette-based methods enable the construc-
tion of a sequence of space–time patterns that encode not only
the spatial information of the body shape but also the temporal
information of the global and local body parts [5].

In a video sequence containing human actions, the human
silhouette in each frame can be represented by a vector in high-
dimensional space and expected intrinsically to lie in a low-
dimensional space embedded within this high-dimensional
space [4]. Manifold learning methods, such as Isometric Feature
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Mapping (Isomap) [29], Locally Linear Embedding (LLE) [30], or
Laplacian Eigenmaps [31], provide the means to identify the
intrinsic geometrical structure of a database and thus facilitate
the analysis of human action motions in compact low-dimen-
sional space. For example, Elgammal and Lee [32] utilized the LLE
method to infer 3D body poses from human silhouettes. Similarly,
Wang and Suter [5] used a linear approximation to the LE method
referred to as the Locality Preserving Projection (LPP) method [33]
to establish low-dimensional feature representation for human
silhouettes. LPP can extract the low-dimensional features of
human silhouettes as a manifold by preserving both the intrinsic
geometry and the local structure of the data via an adjacency
undirected graph that incorporates the neighborhood information
of the database [33]. However, LPP lacks clear rules for preserving
linearity, and the rules for building the adjacency graph are not
strict enough. As a result, the subspace obtained by LPP might be
incompact; i.e., a data point in the subspace may be neighbored
with other data points that are unrelated or similar to it.

Several supervised manifold learning methods based on class
label information have been proposed in recent years, including
Marginal Fisher Analysis (MFA) [9], supervised-LPP [5], and
Locality Sensitive Discriminant Analysis (LSDA) [34]. The class
label information makes possible the discovery of the local spatial
discriminant structure and therefore enables the separation of
images with different action classes. However, in addition to
spatial information (e.g., silhouette shape), temporal information,
such as the dynamic variation of the silhouette shape over a
sequence of video frames, is also helpful in accomplishing reliable
human action recognition systems. Accordingly, various research-
ers have incorporated temporal information into the action
recognition process. For example, Jia and Yeung [4] proposed a
local spatio-temporal subspace learning method (LSTDE) in which
temporal subspaces associated with the data points in consecu-
tive frames were constructed in such a way as to maximize both
the discriminant structure in accordance with the class labels and
the principal angles among the temporal subspaces of the
different classes. Meanwhile, Wang and Suter [5] modeled the
temporal evolution of an action motion as a sequence of projec-
tion points with associated temporal orders and used a hidden
Markov model (HMM) to capture the structural and dynamic
nature of the corresponding motion.

Consequently, the methods for human action recognition are
mainly divided into two approaches: silhouette base and feature
base. The first one utilizes human silhouettes as features which
are commonly extracted by background subtraction [4,5,25]. The
second one adopts motion or interesting information from human
movement such as optical flow or interesting points [6,12,21].
Generally, the feature-based method does not use background
subtraction during preprocessing. The objective in this study is to
design a silhouette-based human action recognition system that
can be integrated into an ordinary visual surveillance system with
real-time moving object detection, classification and activity
analysis capabilities. This system applies a three-step procedure
to learn a discriminant spatio-temporal subspace for classification
purposes. In the first step, a dimensionality reduction method
designated as the Adaptive Locality Preserving Projection (ALPP)
method is used to construct a compact spatial subspace. ALPP
applies a modified graph construction process and a linearity
measurement mechanism and will preserve the linearity in the
local structure information while simultaneously reducing the
dimensionality of the original database. Although ALPP can
preserve the linearity and local structure information well, the
ambiguity of the human body shape among different action
classes will still result in an overlap of the silhouette information
within the spatial subspace. Accordingly, in the second step of the
proposed system, a Non-base Central-Difference Action Vector
(NCDAV) method is used to extract the temporal data from the
reduced spatial subspace to characterize the motion information
in a temporal vector. It should be noted that NCDAV encodes the
difference information between each consecutive frame with the
base data. However, the base data is discarded in the temporal
vector; otherwise, the temporal vector containing base data will
result in overlapped distributions between different action types
in the subspace. Finally, the Large Margin Nearest Neighbor
(LMNN) metric learning method [22] is applied in the third step
to construct a discriminant spatio-temporal subspace where the
temporal vectors belonging to the same action class are clustered
together while those associated with different action classes are
separated by a margin. Having established the spatio-temporal
subspace, human action recognition is achieved by utilizing a
k-NN classifier to determine the action class of each input frame,
and a majority voting mechanism is then applied to identify the
action class of the entire input sequence.

In summary, there are three contributions in this study. The
first one is that the proposed feature extraction method, named as
Adaptive Locality Preserving Projection (ALPP), modifies the
building of adjacency graph to solve the problems of LPP.
The second one is the temporal information extraction, named
as Non-base Central-Difference Action Vector (NCDAV). The
designed temporal vector can reduce the corrupted effect by
the base data and thus reduce the system degradation from the
ambiguous and noise. The third one is the proposed framework
itself, which is to extract discriminant features for action recogni-
tion. According to the properties of the three approaches, the
proposed system is able to not only recognize human actions in
real-time, but also considerably tolerate noise condition.
2. Learning process in a spatio-temporal subspace

Fig. 1 shows the overall framework of the proposed human
action recognition system. As shown, the system comprises a
learning process (see Fig. 1(a)) and a recognition process (see
Fig. 1(b)). Assume that there are M training sequences
X¼[X1,X2,...,XM] and that each sequence comprises ni frames. The
learning process commences by extracting the human silhouettes
from the training sequence frames using a background subtrac-
tion method. To reduce intra-class variations in the subject size,
the silhouettes are centralized and normalized to a consistent size
of w�h pixels. Therefore, each silhouette xi can be represented by
a D-dimensional vector (D¼w�h), and the training set has the
form X¼[x1,x2,...,xN]ARD�N, where N¼

PM
i ¼ 1 ni.

Having constructed the training set, a three-step procedure is
applied to analyze the spatial and temporal information of the
silhouettes in the training sequences and to construct a spatio-
temporal subspace for classification purposes. Section 2.1
describes the ALPP algorithm, which is used to reduce the
dimensionality of the original spatial subspace while preserving
the linearity in the local structure information. Section 2.2
describes the use of the NCDAV method for extracting temporal
information from the training sequences and constructing the
corresponding temporal vector. Finally, Section 2.3 describes the
LMNN method, which is used to construct a discriminant spatio-
temporal subspace for classification purposes.

2.1. Adaptive Locality Preserving Projection (ALPP) for

dimensionality reduction

Human action sequences, as represented by a contiguous
series of human silhouettes, can be viewed as a set of data points
on non-linear manifolds in high-dimensional space. To reduce the
computational cost of the learning process, it is desirable to



Fig. 1. Framework of the proposed human action recognition system: (a) the learning process which can generate the spatio-temporal subspace for classification.

(b) The recognition process which use k-NN method in LMNN spatio-temporal subspace to recognize the human action.

Traditional rules for
graph construction.

New bi-relationrules for 
graph construction.

Fig. 2. Four situations of graph construction in (a) LPP and (b) ALPP.

(For interpretation of the references to color in this figure, the reader is referred

to the web version of this article.)
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eliminate the redundant information within the original
sequences in order to obtain a low-dimensional spatial subspace.
However, in constructing this subspace, the local spatial structure
and relations among the data points must be preserved. That is,
the data points (images) that are close (similar) in the original
high-dimensional space would be also close in the low-dimen-
sional subspace. In the present study, this computation is
achieved by using a new Adaptive Locality Preserving Projection
(ALPP) algorithm. Importantly, ALPP retains the well-known
advantages of the Locality Preserving Projection (LPP) method
[33]. In other words, less computational complexity is needed
than in methods such as the LE or LLE methods [30,31], which
utilize a non-linear spectral embedding technique. In addition, a
linear transformation enables LPP to provide a low embedding for
new data points without computing the entire matrix from
scratch. Moreover, ALPP solves the problem of LPP, which will
be discussed in the following paragraph because of its use of a
modified graph construction process and linearity measurement.

In LPP, the k-NN method is used to define the neighborhood
information in high-dimensional space before constructing the
corresponding graph. When applying the k-NN method, four
possible relationships exist between any pair of points (see
Fig. 2(a), in which the blue edge indicates that the red point is a
neighbor of the blue point, while the red edge indicates that the
blue point is a neighbor of the red point). For example, consider
the case shown in Fig. 3(a), in which a 5-NN clustering scheme is
used to construct the graph. Because k is specified as 5, the
clustering scheme attempts to group each data point with five
neighbors. Consider the red data point shown on the left of
Fig. 3(a). This data point has only 4 neighbors, and thus, the
clustering scheme is forced to add a remote data point (i.e.,
the red data point shown on the right of Fig. 3(a) is added to the
group of neighbors, as indicated by the red edge between the two
points). As shown in Fig. 3(a), the graph comprises two distinct
groups of images; i.e., they are unrelated or dissimilar to one
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Fig. 3. (a) The problem of LPP where an improper edge to connect the unrelated points may cause the congregation of two different groups and the classification error after

the dimensionality reduction. (b) The example of ALPP which use more strict connection rule can avoid the mistake by keeping unimportant data nearby and make the

distribution of the same group more discriminant after the dimensionality reduction. (For interpretation of the references to color in this figure, the reader is referred to the

web version of this article.)
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Fig. 4. (a) An example graph constructed by ALPP. (b) The ‘‘Geodesic distance’’ and

‘‘Euclidean distance’’ of points A and B.
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Fig. 5. An example of linearity measurement indicates that the data point C which

is not the neighbor of A but its linearity is strong enough will add an edge between

them. However, the data point D which is not the neighbor of A and the linearity is

not strong enough will not add an edge between them.
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another. As a result, the edge constructed between them may
cause an inappropriate congregation of the two different groups
following the dimensionality reduction process (see the lower
graph in Fig. 3(a)).

The modified process of building the adjacency undirected
graph in ALPP comprises two major components, namely, graph
construction and linearity measurement. The goal of the graph
construction process is to enforce stricter connection rules in
order to discard the neighbors with low connection relations.
Meanwhile, the goal of the linearity measurement mechanism is
to evaluate the linearity between every pair of points in order to
connect data points that are not neighbors but have linearity
strong enough to have a corresponding edge in the adjacency
undirected graph. In this way, similar data points are grouped
together in the low-dimensional subspace, thereby improving its
discriminatory power and reducing its dimensionality.

In the process of graph construction, the discriminatory power
of the graph is improved by imposing new bi-relation connection
rules between each pair of nodes, as shown in Fig. 2(b). As in the
LPP method, ALPP also recognizes four possible relationships
between each pair of nodes when applying the k-NN clustering
method. However, in contrast to LPP, ALPP constructs an edge in
the adjacency undirected graph only when both nodes in the pair
are neighbors of one another. As a result, ALPP avoids the problem
inherent in LPP of retaining redundant data points simply to
satisfy the requirement for a given number of neighbors and to
make the distribution of the same group more discriminant after
dimensionality reduction (see the lower graph in Fig. 3(b)).

Following the graph construction process, the linearity mea-
surement mechanism [35] is applied to calculate the linearity
between each pair of points with a connected path. Thus, the data
with high linearity are grouped together and thereby the low-
dimensional spatial subspace can be more compact. The linearity
measurement mechanism contains two terms: the Euclidean
distance and the geodesic distance. Consider the graph shown
in Fig. 4(a), which includes four points and has a path between
points A and B. Fig. 4(b) illustrates the Euclidean distance and the
geodesic distance between points A and B. As shown, the
Euclidean distance is the absolute distance between the two
points, while the geodesic distance is the length of the shortest
path between the two points. In accordance with [35], the
linearity lij between two data points, xi and xj, can be evaluated as

lij ¼
Geodesic distance ðxi,xjÞ

Eulidean distance ðxi,xjÞ
: ð1Þ

Because the geodesic distance is always equal to or greater
than the Euclidean distance, lij is always equal to or greater than
1. Clearly, the closer the geodesic distance and Euclidean distance
are to one another, the greater the linearity is between the two
data points. Thus, in the limiting case of lij¼1, the two data points
are totally linear. In ALPP, lij is computed for every possible pair of
data points, and any edges with a linearity of less than a linearity
measurement threshold lt (lt¼1.1 which is defined by the experi-
ments) are added to the adjacency graph that was constructed in
the previous step. For example, assume that the original ALPP
graph contains four data points, A–D, and that each edge in the
graph indicates that the corresponding data points are both
neighbors of one another (see Fig. 5). Furthermore, assume that
the linearity IAC between points A and C is found to have a value of
less than lt. Consequently, an edge is constructed between them
(see the right graph in Fig. 5). In contrast, data points A and D
have only a weak linearity (i.e., IAD4 lt), and thus, no edge is added
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Fig. 6. The adjacency undirected graphs of the two action sequences of bend (orange edge) and walk (green edge): (a) using the traditional rules, (b) using only new bi-

relation rules, and (c) using both new bi-relation rules and linear measurement. The red arrows indicate the difference between adjacency undirected graphs using

traditional and proposed method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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between them. Fig. 6 shows the adjacency undirected graphs of two
action sequences, bend (orange edge) and walk (green edge), using
the traditional rules applied in the LPP method, new bi-relation
rules, and new bi-relation rules and linear measurement, respec-
tively. The red arrows in Fig. 6(a) indicate that a data point in the
graph may have wrong connections with other data points that are
far from it. In contrast, the proposed method can reduce the wrong
connections to preserve the local structure of the data set (see
Fig. 6(c)).

After the graph construction and linearity measurement pro-
cesses, a weight matrix W is obtained whose elements Wij are
either 1 or 0, depending on the connection between xi and xj. It is
to be noted that W describes both the linearity and the relation-
ship between every pair of points. For example, Wij¼1 implies a
strong linearity and a relationship between points xi and xj,
whereas Wij¼0 indicates that the two data points are unrelated
to one another. In other words, the value of W is assigned as
follows:

Wij ¼
1 if xi and xj are connected,

0 else:

(
ð2Þ

According to the locality-preserving criterion, which ensures
that those points that have sufficient linearity (i.e., lijo lt) in the
original high-dimensional space are grouped together in the low-
dimensional subspace [33,35], the weight matrix W that records
the local structure or linearity between each pair of data points is
added to the objective function. There exists a transformation
matrix A to minimize the following objective function:

arg min
X

ij

ðyi�yjÞ
2Wij ¼ arg min

A

X
ij

ðAT xi�AT xjÞ
2Wij, ð3Þ

where xi is the original data point and yi is the correspond-
ing data point in the low-dimensional subspace. Because each
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transformation vector in A can work independently, Eq. (3) can be
rewritten as follows:

arg min
a

X
ij

ðaT xi�aT xjÞ
2Wij, ð4Þ

where a is the transformation vector. After a process of algebraic
manipulation [15], Eq. (4) can be reformulated as follows:

arg min
a

aT XLXT a, ð5Þ

where L is the Laplacian matrix; D is the diagonal matrix, in which
Dii ¼

P
jWij; and L¼D�W. The value of Dii in D indicates the

number of neighbors of data point xi. In other words, the more
neighbors xi has, the larger the value of Dii and the greater the
importance of xi. As described in [33], the following constraint is
imposed on the objective function given in Eq. (5):

aT XDXT a¼ 1: ð6Þ

This constraint not only causes the data point with the largest
value of Dii to be located close to the origin of the low-dimen-
sional subspace but also restrains the distribution of all of the
remaining data points. Combining Eqs. (5) and (6), the optimiza-
tion problem becomes

arg min
a

aT XLXT a

s:t: aT XDXT a¼ 1: ð7Þ
Fig. 7. 2D distribution of 10 action sequences in (a) LPP subspace, and in (b) ALPP

respectively. In addition, the smooth change of silhouette images and the compactness

linearity of data points. (For interpretation of the references to color in this figure, the
Then, Eq. (7) can be solved via the Lagrangian formulation as
follows:

Lagrangian¼ aT XLXT a�laT XDXT a

)
@

@a
ðaT XLXT a�laT XDXT aÞ ¼ 0

) XLXT a¼ lXDXT a, ð8Þ

where the two matrices XLXT and XDXT are both symmetric and
positive semi-definite. Eq. (8) is a generalized eigen-decomposi-
tion problem [4,5,30–33,35], and the transformation matrix
A¼[a1,a2,...,ad]ARD� d is given by the eigenvectors corresponding
to the d smallest eigenvalues. Thus, the data in the low-
dimensional subspace can be obtained as Y¼ATX, where
Y¼[y1,y2,...,yN]ARd�N. Fig. 7(a) and (b) show the distribution of
Y in the LPP and ALPP subspace. As the diagrams indicate, the
distribution of Y in the ALPP subspace is more compact than its
distribution in the LPP subspace. In addition, as shown in Fig. 7,
the continuity of action in the ALPP subspace is smoother than
that in the LPP subspace (i.e., the images that are close (similar) in
the original high-dimensional space are also close in the low-
dimensional subspace).

2.2. Temporal vector creation

After obtaining the spatial subspace by ALPP, all of the training
silhouettes are projected in this subspace, and thus, the
: bend 
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: side 
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: wave1 
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subspace, (c) is the 2D distribution of wave1 action sequence in LPP and ALPP,

of distribution indicate that ALPP subspace can preserve better local structure and

reader is referred to the web version of this article.)
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Fig. 8. (a) Example silhouette sequences of jump and skip. (b) Example silhouette sequences of jack and wave2. The red round rectangles indicate the similar and

ambiguous parts of two different actions. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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computational complexity of the learning process is reduced.
However, due to the ambiguity of the human body shape in some
specific images among different action types (see the red round
rectangles as shown in Fig. 8), an overlap occurs in the spatial
subspace. In other words, according to the graph construction
rules of ALPP, those similar images will be located together (see
the red round rectangle as shown in Fig. 7(b)) in the ALPP
subspace even if they belong to different action types. Accord-
ingly, inspired from the extraction of feature points variation by
optical flow for the facial expression recognition, a Non-base
Central-Difference Action Vector (NCDAV) method is proposed
which only considers the variation between consecutive data in
the spatial subspace to reduce the ambiguous or corrupted effect,
as follows:

y0i ¼

½yi�y1,:::,yi�yi�1,yi�yiþ1,:::,yi�y2tþ1� if irt,

½yi�ym�2t ,:::,yi�yi�1,yi�yiþ1,:::,yi�ym� if iZm�t,

½yi�yi�t ,:::,yi�yi�1,yi�yiþ1,:::,yi�yiþ t� otherwise,

8><
>: ð9Þ

where t is a parameter governing the period over which the
temporal information is to be taken into account, m is the total
number of frames in each sequence, and yi denotes the ‘‘base
data’’. Fig. 9 illustrates the basic concept of the proposed
approach. Assuming that t is assigned a value of 2, four data
points that not only belong to the same sequence but are also
temporally closest to the base data yi are added to form a new
vector, which includes temporal information. Note that if irt or
iZm�t, only the first and last 2tþ1 data points are added to the
new vector, to preserve the consistency of the temporal data.
In other words, the temporal vector (see Eq. (9)) encodes the
temporal information by computing the difference between
the consecutive data yj with the base data yi (ia j). Moreover,
the temporal vector including the base data which is similar to
other different action types or corrupted by noise would still
result in the ambiguity problem. Hence, to reduce the effects of
ambiguity between different actions, the base data is discarded
from the temporal vector. Fig. 10 shows the data distribution of
actions (jack and wave2), and it can be observed from this figure
that the distribution with the temporal vector including the base
data is highly overlapped and results in an ambiguous problem
(see Fig. 10(a)). The distribution of temporal vectors without the
base data can reduce the effect of ambiguity different actions (see
Fig. 10(b)). Finally, all of the y0 iAR2dt are aggregated to form Y0, in
which Y0 ¼[y01,y02,...,y0N]AR2dt�N, where N is the total number of
data in the training set.

2.3. Spatio-temporal subspace creation using Large Margin Nearest

Neighbor (LMNN)

In this study, a simple and non-linear approach, namely
k-nearest neighbor (k-NN) classifier, is applied to decide the class
label of the test data in the test process. The mechanism of k-NN
classifier is to classify the test data according to the labels of
nearby neighbors. However, there are two issues which should be
taken into consideration: First, if the extracted features for the
training data are not discriminant enough to maximize the
separability between different action classes, the classification
results of k-NN will not be promising. Second, the distance
measurement has effects on the determination of the nearby
neighbors. As known, there are several distance measurements
(e.g. Euclidean distance and Mahalanobis distance), which
approach is suitable for k-NN classifier? For the past few years,
many researches devoted themselves on this issue. Among the
studies about the derivation of good distance metric, the Large
Margin Nearest Neighbor (LMNN) method is the state-of-the-art.
Also it is the first approach to design the distance metric based on
the mechanism of k-NN classifier [22]. Therefore, the LMNN
method, which ensures the compact grouping of data points with
the same class while simultaneously maximizing the separation
distance between data points with different classes is used to
construct the spatio-temporal subspace required for k-NN
classifier.

The LMNN method commences by assigning to the temporal
vectors Y0 ¼[y01,y02,...,y0N] a corresponding class label li¼{1,2,...,c},
where c is the total number of class label types. The distance
between vectors y0i and y0j is then computed using the Mahala-
nobis distance metric. Let the transformation matrix L with
dimensions 2dt�2dt be defined as follows:

Dðy0i�y0jÞ ¼ JLðy0i�y0jÞJ
2: ð10Þ

To improve the performance for the k-NN classifier, the
transformation matrix L can be obtained from the following
objective function:

Ln
¼ arg min

L

X
ij

ZijJLðy0i�y0jÞJ
2

þb
X
ijk

Zijð1�rikÞ½1þJLðy0i�y0jÞJ
2
�JLðy0i�y0kÞJ

2
�þ ð11Þ

As shown, Eq. (11) comprises two competing terms. In the first
term, Zij has a value of either 1 or 0, depending on the relationship
between y0i and y0j. If y0j is a neighbor of y0i and both vectors share
the same label type, Zij is assigned a value of 1; otherwise Zij is set
to 0. This term penalizes a large separation distance between
vectors y0i and y0j if Zij has a value of 1. In other words, it prompts
the LMNN algorithm to minimize the distance between neighbors



Fig. 11. Complete schematic illustration of LMNN: (a) the original data distribution which dimension is d, (b) during the LMNN process, the neighbor data with the same

label will be pulled in, and the neighbor data with different label will be pushed out and (c) the result after the LMNN which dimension is d.

(t= 2) (t= 2) 

: jack 
: wave2 

Fig. 10. 3D visualization of ambiguous temporal vectors (jack and wave2): (a) base data is retained and (b) base data is discarded.
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with the same class label when constructing the spatio-temporal
subspace.

In the second term in Eq. (11), b is a positive constant that is
used to weight the relative importance of the two competing
terms, and rik has a value of either 1 or 0. Specifically, rik is set to
1 if vectors y0i and y0k have the same class label and is set to
0 otherwise. This term penalizes a small separation distance
between vectors with a different class label. In other words, the
term serves to separate vectors that have a different class label
within the spatio-temporal subspace.

We note that the dimension of the spatial–temporal subspace
is the same as that of the temporal vector (AR2dt). In other words,
the aim of LMNN is not to reduce the dimension of the temporal
vector but to re-organize the data points in such a way that they
are more amenable to classification. Fig. 11 presents a schematic
illustration of the LMNN process. Fig. 11(a) shows the original
graph constructed by the ALPP and NCDAV algorithms, while
Fig. 11(b) shows the effect of the optimization function in bring-
ing together vectors with the same class label while driving away
vectors with a different class label. Finally, Fig. 11(c) shows the
final spatio-temporal graph. As described in [22], the optimization
function given in Eq. (11) can be reformulated as a semi-definite
program (SDP) problem and more discussion can be referred to
[22]. Fig. 12 shows the 3D visualization of the spatio-temporal
subspace after the LMNN method. The data points of the same
action cluster together, whereas the data points of ambiguous
actions, such as jack and wave2, are separated (see Fig. 12(b)).
3. Recognition process using k-NN classification
in a spatio-temporal subspace

After the learning process, two transformation matrices are
obtained that allow us to analyze the spatial and temporal
information of new data points; the matrices are the spatial
subspace transformation matrix A obtained from ALPP and the
spatio-temporal subspace transformation matrix L obtained from
LMNN. The recognition process commences by obtaining human
silhouettes as input test sequences. The input sequences are
transformed to the spatio-temporal subspace via the two trans-
formation matrices and the NCDAV method, and they are then
recognized using a k-NN classifier.

As shown in Fig. 1(b), the binary silhouettes in the input
test sequence are centralized and normalized to a consistent
size of 64�48 pixels. The normalized sequence is noted as
Xtest
¼ ½xt

1,xt
2,:::,xt

n�, where n is the total number of frames in the
sequence. Each normalized frame xt

i ði¼ 12nÞ is projected to
the spatial subspace (Ytest

¼ATXtest) by transformation matrix A.
The spatial data are then extended to the temporal vector by
the NCDAV method, as defined in the training process. Finally, the
temporal data are transformed to the spatio-temporal subspace
via the transformation matrix L.

Having transformed the temporal data to the spatio-temporal
subspace, the human action portrayed in the input sequence is
recognized using the k-NN classifier. When implementing the classi-
fier, the value of k is set to 6. In other words, 6 neighbors are found for
each test frame in the spatio-temporal subspace. Because the
transformation matrix L has already been obtained from the learning
process, the class label of the six neighbors is examined, and a
majority voting mechanism is used to determine the overall class of
the test frame. Once all of the test frames xt

i ði¼ 12nÞ have been
assigned a class, a majority voting mechanism is once again applied
to determine the overall class of the test sequence.
4. Experimental results

In this study, three databases are considered: Weizmann [24],
ORL [36] and MNIST [37], to ensure the evaluation is extensive for
proposed method. ORL database and MNIST database are only



Fig. 13. The sample images cropped from (a) Weizmann database [24], (b) ORL database [36] and (c) MNIST database [37], respectively.

: bend 

: jack 
: jump 

: pjump 

: run 

: side 

: skip 

: walk 

: wave1 

: wave2 

(k = 6) 

Fig. 12. 3D visualization of the distribution in spatio-temporal subspace after LMNN method: (a) the distribution of total 10 action sequences and (b) the distribution of

different ambiguous action sets by different angle view, such as jack and wave2, jump and skip.
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used for the evaluation of ALPP, but Weizmann database is used
for all the evaluations, such as the robustness test and evaluation
of whole system. In this section, the optimized parameters (k, lt
and d) of ALPP were defined first with quantitative experiments
on Weizmann, ORL and MNIST databases. Then, to evaluate the
proposed ALPP, those three databases are used again to compare
ALPP with other methods, such as Principal Component Analysis
(PCA) [38], Linear Discriminant Analysis (LDA) [39], LSDA [34] and
LPP [33]. Subsequently, the recognition performance with the
NCDAV method was compared with other alternative forms of
temporal vectors. In addition, the action sequences with various
degrees of synthetic noise were used to test the robustness of the
proposed method. Finally, the performance of the proposed
system was compared with that of existing silhouette-based
and feature-based human action recognition systems. In every
case, the experiments were performed on an ASUS PC with an
AMD 3.20 GHz CPU and 2 G of RAM.

4.1. Database collection

The Weizmann database consists of 10 different actions per-
formed by 9 different individuals. The 10 actions are displayed in
Fig. 13(a): bending (bend), jumping jack (jack), jumping forward on
two legs (jump), jumping in place on two legs (pjump), running (run),
galloping sideways (side), skipping (skip), walking (walk), waving one
hand (wave1), and waving two hands (wave2). The database contains
a total of 93 sequences because some of the actions are performed
more than once by the same individual. However, in the present
experiments, 90 sequences were used (i.e., the repeated actions were
omitted). As in the learning process, the silhouettes were centralized,
cropped and resized to 64�48 pixels. To obtain unbiased estimation
results, the recognition tests were performed using a nine-fold cross-
validation technique. More specifically, in each run of a test, all of the
sequences corresponding to a specific individual (i.e., 10 sequences
with different actions) were used as test sequences in the recognition
process, while the remaining 80 sequences in the database were used
in the learning process. The recognition results were then averaged
over nine runs, where each run corresponded to a different individual.

The ORL database contains 400 images of 40 individuals. The
images are gray-level bitmaps captured at different times and
have different variations including expressions (i.e., open or
closed eyes, smiling or non-smiling) and facial details (i.e., glasses
or no glasses). Also, the images were taken with a tolerance for
some tilting and rotation of the face up to 20 degrees, and resized
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to 64�64 pixels. The sequence of experiment is designed as same
as previous studies [9], [34]; a random subset with p (¼4, 5, 6)
images per individual was taken for training and the rest of the
database was considered to be the testing set, namely p-Train. For
each given p, the results are recorded over 20 random splits. Then,
the best result and its corresponding dimensionality for each
method are reported. Some sample images are displayed in
Fig. 13(b).

The MNIST database is a widely known benchmark which
contains a training set of 60,000 images of 10 individuals and a
test set of 10,000 images. The images are gray-level bitmaps
resized and centered in a 28�28 pixels frame. For computational
reasons, 800 images of each class in training set are selected
randomly for training and 8000 images of test set are selected
randomly for testing. Also, we tested for 20 times, and merely the
best result and corresponding dimensionality for each method are
reported. Some selected images are displayed in Fig. 13(c).

4.2. Comprehensive evaluation of ALPP

Quantitative experiments on Weizmann database [24], ORL
database [36] and MNIST database [37] are conduced to investi-
gate the optimal parametric settings of the proposed ALPP
method, including the dimensionality (d) of the reduced subspace,
the linearity measurement threshold (lt), and the number of
neighborhood (k). Note that the values of the parameters are
lt¼1.0–1.5, d¼1–50 and k¼1–8 for the tests. For each object
parameter, Fig. 14 reports the lowest error rate among all the
tests with variant values of other parameters.

For the dimensionality of the ALPP subspace (see Fig. 14(a)), it
can be observed that the error rate is stable (the maximum
difference of error rates is smaller than 0.3%) when the dimen-
sionality of the reduced subspace is larger than 34, 38, and 39 for
Weizmann, ORL (5-Train) and MNIST databases, respectively.
According to the results, considering the trade-off between the
computation time and the error rate, d¼34, 38 and 39 are
recommended for the ALPP on Weizmann, ORL (5-Train) and
MNIST databases, respectively. For the optimal setting of the
Fig. 14. Error rate of ALPP on Weizmann database [24], ORL database [36] and MNIST da

measurement threshold (lt) and (c) k nearest neighborhood (k).
linearity measurement threshold (see Fig. 14(b)), the error rate is
the lowest when the value of lt¼1.1 for Weizmann database and
MNIST database, and lt¼1.2 for ORL database (5-Train). In addi-
tion, it can be observed that the recognition performance dete-
riorates as the value of the linearity threshold parameter
increases on all the databases. This result is consistent with
expectation because the aim of ALPP in constructing the spatial
subspace is to preserve linearity in the local data structure.
Consequently, it follows intuitively that the classification perfor-
mance decreases as data points having weaker linearity are
involved in the constructed adjacency matrix. For determining
the number of neighbors in the ALPP (see Fig. 14(c)), it can
provide the lowest error rate on Weizmann and MINST databases
when k is set to 5 and 6. However, the optimal value of k for ORL
database (5-Train) is 3 and the difference of the error rate by
using k¼3 and 5 is 2.5%. It’s because the training number of each
class in ORL database is smaller than others. Hence, smaller k can
help ALPP preserve local structure of the data distribution when
the training number of each class is small.

Table 1 compares the recognition accuracy of different
approaches, such as PCA [38], LDA [39], LSDA [34], LPP [33] and
ALPP on ORL [36], MNIST [37] and Weizmann [24] databases.
Noted, all the methods use k-NN as the classifier (k is set to 5) for
its simplicity. It can be seen that ALPP can outperform other
methods with sufficient training data, such as for the MNIST and
Weizmann databases. However, when the distribution of data set
is complex and the training data cannot represent the data
distribution well, such as the case of ORL database (5-Train),
ALPP appears to be less effective than supervised methods (LDA
and LSDA), though still better than the unsupervised methods
(LPP and PCA). In addition, when the training samples are larger,
such as the case of ORL database (6-Train), ALPP performs better
than LDA.

4.3. Performance comparison of different temporal vector types

To investigate the contribution of the spatio-temporal infor-
mation toward the performance of the proposed human action
tabase [37] using different parameters: (a) reduced dimensionality (d), (b) linearity



Table 1
The accuracy rates of different approaches on ORL, MNIST and Weizmann databases. The number in parentheses is the reduced

dimensionality (d) for the corresponding methods.

Methods Recognition accuracy (%)

ORL (4-Train) ORL (5-Train) ORL (6-Train) MNIST Weizmann

PCA [38] 81.9 (161) 87.2 (198) 89.3 (233) 93.6 (59) 80.2 (58)

LDA [39] 89.9 (38) 93.3 (38) 94.2 (38) 85 (9) 83.1 (9)

LSDA [34] 90.5 (39) 93.6 (39) 94.9 (39) 91.5 (35) 90.0 (35)

LPP [33] 90.3 (39) 92.2 (39) 93.5 (39) 93.7 (31) 86.7 (40)

ALPP 90.3 (38) 92.7 (38) 94.4 (38) 95.0 (39) 92.2 (34)
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Fig. 15. Various forms of temporal vectors in the ALPP space: (a) Action Trajectory Vector (ATV), (b) Central-Difference Action Vector (CDAV), (c) Adjacent-Difference

Action Vector (ADAV) and (d) Non-base Adjacent-Difference Action Vector (NADAV).
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recognition system, a series of experiments was performed in
which the recognition accuracy of the proposed ALPPþNC-
DAVþLMNN scheme was compared with that of ALPPþLMNN
schemes in which NCDAV was replaced by four forms of temporal
vectors: Action Trajectory Vector (ATV), Adjacent-Difference
Action Vector (ADAV), Central-Difference Action Vector (CDAV),
and Non-base Adjacent-Difference Action Vector (NADAV). ATV is
formed by incorporating the feature vectors in the spatial sub-
space of those data that are temporally close to the base data as
additional information. ADAV calculated the difference between
two adjacent data; this type of difference is called an adjacent
difference. Then, ADAV is formed by incorporating the adjacent
difference as additional information. CDAV is formed by adding
the difference between the base data and those data that are close
to it as additional information. Finally, NADAV also uses the
adjacent difference of the data that are close to the base data as
additional information, but it eliminates the base data. The
various spatio-temporal vectors are illustrated schematically in
Fig. 15.

Fig. 16 shows the recognition results obtained when using the
LPP-LMNN and ALPP-LMNN methods with various types of
temporal information vectors. (Note that the value of t used by
NCDAV in extracting the temporal data is set to 2.) Comparing the
recognition results shown in Fig. 16, it is clear that the inclusion
of temporal information in the classification process yields a
notable improvement in the recognition accuracy, irrespective
of the method used to construct the spatial subspace (i.e., LPP or
ALPP). Furthermore, irrespective of the temporal vector, the
recognition accuracy obtained using the ALPP-based framework
is better than that obtained using the LPP-based framework
because the compact spatial subspace created by ALPP preserves
linearity in the local data structure. In addition, the results of
ALPP incorporated only with NCDAV (orange bars) indicate that
the use of temporal vectors can reduce the effects of ambiguity
between some action sequences. Moreover, the frameworks in
which the temporal vectors eliminate the base data (i.e., NADAV
and NCDAV) achieve a higher classification performance than
those in which the base data is retained. Generally speaking,
misclassification errors of the input test sequences are due to
either an ambiguity in the body shape among different action
classes (see Fig. 8) or the effects of noise or a non-standard
execution of the prescribed action (see Fig. 17). Hence, NADAV
and NCDAV, which remove the base information, can avoid the
above disadvantages. As shown in the two confusion matrices
presented in Fig. 18, the ALPPþNCDAVþLMNN framework has an
improved robustness toward ambiguity, noise-corruption and
non-standard actions compared to ALPPþCDAVþLMNN. More-
over, as shown in Fig. 16, the ALPPþNCDAVþLMNN framework
obtains the highest recognition accuracy (98.9%) of all of the
various frameworks.

4.4. Performance evaluation under noise-corrupted silhouettes

To test the robustness of the proposed ALPPþNCDAVþLMNN
framework, an additional series of experiments was performed in
which salt and pepper noise with a density of between 0.1 and



Fig. 16. Comparison bar chart based on various combinations of methods. (For interpretation of the references to color in this figure, the reader is referred to the web

version of this article.)

Fig. 17. A noisy sequence of action wave1 that will lead to classification error.

Fig. 18. Recognition performance of our approach measured using confusion matrices: (a) using ALPPþCDAVþLMNN and (b) using ALPPþNCDAVþLMNN. Vertical rows

show ground truth, and horizontal columns indicate recognition results.

Fig. 19. From left to right are the noise-corrupted silhouettes with different degrees of synthetic noise, which are 0, 0.1, 0.15, 0.2, 0.25, 0.3 and 0.35, respectively.

Table 2
Robustness evaluation with respect to different degrees of synthetic noise density V.

Methods Recognition accuracy (%)

V¼0 V¼0.1 V¼0.15 V¼0.2 V¼0.25 V¼0.3 V¼0.35

ALPPþNCDAVþLMNN 98.9 96.7 93.3 92.2 89.9 81.1 77.8

ALPPþCDAVþLMNN 94.4 92.2 91.1 88.9 85.6 75.6 68.9
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0.35 was added to the input silhouette images. Note that the noise
density V indicates the number of corrupted pixels as a fraction of
the total number of pixels in the image. Fig. 19 illustrates the
effects of the various density values V on one frame within the run

silhouette sequence in the Weizmann database. For each action in
the Weizmann database, the uncorrupted silhouettes were used
as training data. Then, the noise-corrupted silhouettes were
classified individually using the ALPPþNCDAVþLMNN and
ALPPþCDAVþLMNN methods, respectively. The classification
results obtained using the two frameworks are summarized in
Table 2. As shown, the ALPPþCDAVþLMNN method is more
sensitive to noise than the ALPPþNCDAVþLMNN method. This
result is to be expected because the corrupted base data is
retained within the temporal vector constructed using CDAV
but excluded by NCDAV. For both frameworks, the recognition
performance deteriorates as the noise density increases. However,
the proposed ALPPþNCDAVþLMNN framework achieves a con-
sistently high recognition performance (i.e., 492.2%) provided
that the noise density does not exceed 0.2.

4.5. Performance comparisons with existing

action recognition systems

The performance of the proposed method was further evalu-
ated by comparing its recognition accuracy with that of other
silhouette-based human action recognition systems using the
Weizmann database. The corresponding results are presented in
Table 3. Among the various methods listed in Table 3, the Local
Spatio-Temporal Discriminant Embedding (LSTDE) method pro-
posed by Jia and Yeung [4] is similar to the method proposed in
this study in that it is also based on a dimensionality reduction
approach. Specifically, LSTDE uses LSDA to generate a spatial
subspace and then applies a canonical correlation technique to
mesh the temporal information with the spatial information.
However, the LSTDE method achieves lower recognition accuracy
(90.9%) than the ALPPþNCDAVþLMNN method proposed in this
study. Furthermore, the ALPPþNCDAVþLMNN method allows
Table 3
Recognition accuracy of some silhouette-based approaches

which use the silhouette of Weizmann database as the

input data. All of these approaches use evaluation method

of leaving one out cross validation.

Methods Recognition

accuracy (%)

Our approach 98.9
Wu et al. [40] 98.9

Zhang and Gong [41] 89.4

Jia and Yeung [4] 90.9

Poppe and Poel [25] 95.6

Wang and Suter [26] 97.8

Table 4
Recognition accuracy of some other feature-based approaches on Weizmann database.

approach, and all of these approaches use evaluation method of leaving one out cross

Methods Features Recog

Our approach Spatial–temporal vectors LMN
Bregonzio et al. [16] Clouds of interest points Neare

Chaudhry et al. [6] Histogram of oriented optical flow features Non-

Lee and Chen [21] Histogram-based interest points Bhatt

Filipovych and Ribeiro [42] 2D and 3D Interest sub-regions Pose

Ali et al. [43] Trajectories of body joints Phase

Neibles and Li [12] Spatial–temporal interest points Hiera
the human action recognition process to be accomplished in real
time. For example, given a value of t¼2 in the NCDAV algorithm,
each frame in the input sequence can be classified within 33 ms.
The recognition accuracy achieved using the method proposed by
Wu et al. [40] is identical to that achieved using the proposed
method. However, the computational cost of the method in [40] is
significantly higher than that of the ALPPþNCDAVþLMNN
method.

Table 4 compares the recognition accuracy of the proposed
method with that of several existing methods in which certain
local features of the Weizmann database (e.g., optical flow
features [6] or sparse spatio-temporal interest points [16]) are
taken as the input to the recognition process rather than the
entire silhouette image. The results show that the ALPPþ
NCDAVþLMNN method can provide the promising results.
5. Conclusions

This paper has proposed a silhouette-based human action
recognition system in which a discriminant spatio-temporal sub-
space is constructed in a learning process, and unknown human
actions are then recognized using a k-NN classifier. In the learning
process, the silhouette data are transferred to a low-dimensional
discriminant spatial subspace by a modified version of the
Locality Preserving Projection (LPP) method [33] designated as
the Adaptive Locality Preserving Projection (ALPP) method. The
temporal information within the spatial subspace is then
extracted using a new Non-base Central-Difference Action Vector
(NCDAV) technique. Finally, the Large Margin Nearest Neighbor
(LMNN) metric learning method is used to build a discriminant
and efficient spatio-temporal subspace for classification purposes.
The experimental results have shown that the proposed system
outperforms existing silhouette-based or feature-based human
action recognition systems. Moreover, the proposed method has a
low-computational complexity due to the simple operation of
low-dimensional matrices used in the recognition process. Finally,
the proposed system is robust toward the effects of noise in the
input images. Accordingly, the ALPPþNCDAVþLMNN framework
proposed in this study represents an ideal solution for real-time,
real-world human action recognition applications.

In the future, the system could be improved from the following
perspectives. In order to apply the system for the daily applica-
tions, more action types are needed. However, only silhouette
information as input neglecting the 3D information will cause the
ambiguity and limit the system capability for real-world. For
example, waving hands forward the body or clapping hands will
be ambiguous. Hence, applying multiple data source, such as
depth information or multi-view images (capturing one action
sequence with different cameras from different views) could be a
way to improve our system. Besides, depth information can
provide more delicate human motion for recognition.
Noted, the extracted features and the recognition strategy are organized for each

validation.

nition approach Recognition accuracy (%)

NþKNN 98.9
st neighbor classifier and support vector machine 96.6

linear dynamical systems 94.4

acharyya coefficient measurement 84.4

models and motion dynamics model 88.9

space embedding 92.6

rchical model 72.8
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